RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) SECOND YEAR [BATCH 2014-17] B.A./B.Sc. FOURTH SEMESTER (January – June) 2016 Mid-Semester Examination, March 2016 **COMPUTER SCIENCE** (Honours) Date : 17/03/2016 Full Marks : 50 Paper : IV Time : 11 am – 1 pm [Use a separate Answer Book for each group] <u>Group – A</u> (Answer any two questions) [2×10] 1. a) Write a short note on process creation. [5] b) What is exponential average in process scheduling? [2] What is the drawback of SJF and how is it resolved? [3] c) 2. a) Compare direct and indirect communication. [4] b) Provide a solution for bounded-buffer problem of Producer-Consumer process using semaphore. [6] What are the advantages of multithreading? [3] 3. a) Explain conditions of deadlock using resource-allocation graph. b) [5] What is virtual machine? c) [2]

<u>Group – B</u> (Answer <u>any one</u> question)

- 4. a) Define Mealy machine.
 - b) Construct a Moore machine which is equivalent to the following Mealy machine described by its transition table

Present State			Next State					
		Input $a = 0$			Input $a = 1$			
		State	Output		State	Output		
	$\rightarrow q_1$	\mathbf{q}_3	0		q_2	0		
	q_2	q_1	1		\mathbf{q}_4	0		
	\mathbf{q}_3	\mathbf{q}_2	1		\mathbf{q}_1	1		
	\mathbf{q}_4	\mathbf{q}_4	1		q_3	0		

- c) Give DFA accepting the set of strings such that, decimal value of the bit strings are not divisible by 5, over alphabet $\{0,1\}$.
- d) Find the regular expression representing the set of all strings over {a,b} in which the number of occurrence of 'a' is divisible by 3.
- e) Check whether the language consisting of all strings of 1's whose length is a prime, is regular language or not.
- 5. a) Give DFA accepting the language that the set of all strings that either begin or end (or both) with 01.
 - b) What do you mean by equivalent states or comparable states?
 - c) Design ∈ -NFA for the language that the set of strings consisting of zero or more a's followed by zero or more b's, followed by zero or more c's. [5]

[1×15]

[2]

[4]

[4]

[3]

[2] [1] d) Consider the following \in -NFA.

	∈	a	b	с
$\rightarrow p$	$\{q,r\}$	φ	{q}	{ r }
q	φ	{p}	{r}	$\{p,q\}$
*r	φ	φ	φ	φ

- i) Convert the automata to a DFA.
- ii) Give all the strings of length three or less accepted by the automata.
- e) Write down the statement of Pumping lemma for Regular language.

<u>Group – C</u>

6. Answer any three questions :

- a) Write an algorithm to test whether a graph is bipartite or not.
- b) Write a heap sort algorithm and find its time complexity.
- c) Let A[1...n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A. Give an algorithm that determines the number of inversions in any permutation on n elements in $\theta(n \lg n)$ worst-case time.
- d) Arrange the following function in ascending order of their growth rate.

 $n^{\frac{1}{3}}, e^n, n^{\frac{7}{4}}, n \log^9 n, (1.0000001)^n$. Prove that $pn^2 + qn + r = \theta(n^2)$, where p > 0.

_____ × _____

[3×5]

[2]